Sains Malaysiana 54(1)(2025): 33-47
http://doi.org/10.17576/jsm-2025-5401-04
Pencirian Interaksi antara Labetalol Hidroklorida dengan Albumin Serum Manusia dan Glikoprotein Asid-α1
(Characterization of the Interaction
between Labetalol Hydrochloride with Human Serum Albumin and Acid Glycoprotein-
α1)
KHAIRUL
AZREENA BAKAR1, NG YAN HONG1, MUHAMMAD FIRDAUS NAZRI1,
HANISAH FATINI MUHAMAD1, THARISHINI SUBRAMANIAM1,
ROSHALINI UITHAYAKUMAR1, AIDA NABILA ABDUL RAZAR1 &
SHEVIN RIZAL FEROZ1,2,*
1Department of Biological Sciences and
Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Structural Biology and Protein Engineering Research Group, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
Received: 30
April 2024/Accepted: 18 September 2024
Abstrak
Labetalol hidroklorida (LAH) adalah sejenis dadah antihipertensi perencat α-β yang digunakan dalam rawatan hipertensi jangka panjang. Keberkesanan dadah ini bergantung kepada pengikatannya dengan protein plasma yang mempengaruhi sifat farmakokinetiknya. Walau bagaimanapun, terdapat jurang penyelidikan dari segi profil pengikatan LAH dengan albumin serum manusia (HSA) dan glikoprotein asid-α1 (AAG), dua protein plasma manusia yang utama. Oleh itu, penyelidikan ini telah dijalankan untuk mencirikan interaksi antara LAH dengan HSA dan AAG menggunakan kaedah multispektroskopi, mikroskopi dan analisis struktur. Perubahan pada spektrum penyerapan UV protein menunjukkan berlakunya pembentukan kompleks protein–LAH. Analisis data spektroskopi pendarfluor menunjukkan bahawa interaksi protein–LAH mempunyai keafinan yang sederhana dan adalah berbalik. Namun, LAH didapati mempunyai afiniti pengikatan yang lebih tinggi dengan AAG berbanding HSA. Seterusnya, hasil analisis mikroskop daya atom menunjukkan perbezaan morfologi dan dimensi protein setelah mengikat dengan LAH. Berdasarkan analisis struktur LAH dan simulasi dok molekul, pembentukan kompleks LAH–protein melibatkan beberapa jenis ikatan intermolekul seperti ikatan hidrogen, daya hidrofobik dan pelbagai interaksi sistem-π. Hasil kajian sesaran dadah kompetitif merumuskan bahawa tapak II dan I HSA adalah tapak pengikatan primer dan sekunder bagi LAH, berpadanan dengan hasil analisis dok molekul. Maklumat daripada kajian ini boleh dimanfaatkan dalam penghasilan dadah terbitan LAH yang lebih cekap dan selamat.
Kata kunci: Albumin serum manusia; glikoprotein asid-α1; hipertensi; interaksi dadah₋protein; labetalol hidroklorida
Abstract
Labetalol
hydrochloride (LAH) is a α-β blocker used in the long
term treatment of hypertension. The efficacy of this drug depends on its
binding to plasma proteins, which influences its pharmacokinetic properties.
However, there is a significant research gap in understanding the binding
profile of LAH with the major human transport proteins, human serum albumin
(HSA) and α1-acid glycoprotein (AAG). Hence, this research was
conducted to characterize the interaction of LAH with HSA and AAG using
spectroscopic, microscopic, and structural analyses. Alterations in the UV
absorption spectra of the proteins indicate the formation protein–LAH
complexes. Fluorescence experiments showed moderate affinity and reversible
binding between LAH and both proteins. However, LAH was found to interact more
strongly with AAG compared to HSA. Furthermore, atomic force
microscopic images showed differences in the morphology and dimensions of the
proteins upon binding to LAH. Based on structural analysis of LAH and molecular
docking results, the formation of the protein – LAH complexes involved various
intermolecular forces including hydrogen bonds, hydrophobic interactions, and
several π-system interactions. Competitive drug displacement results
suggested sites II and I as the primary and secondary binding sites of LAH on
HSA, respectively, in general agreement with the docking simulations. The
present findings may be valuable in the development of more effective and safer
derivatives of LAH.
Keywords: α1-acid
glycoprotein; drug–protein interaction; human serum albumin; hypertension;
labetalol hydrochloride
REFERENCES
Abdullah, A. &
Yusof, M.K. 2019. Labetalol: A brief current review. Pharmacophore 10(6): 50-56.
Abi-Khalil, E., Segond, D., Terpstra, T., André-Leroux, G., Kallassy, M., Lereclus, D., Bou-Abdallah, F. & Nielsen-Leroux, C. 2015. Heme interplay between IlsA and IsdC: Two structurally different surface proteins from Bacillus
cereus. Biochimica et Biophysica Acta (BBA) - General Subjects 1850(9):
1930-1941.
Affandi, I.S.M., Lee, W.Q., Feroz, S.R., Mohamad, S.B. & Tayyab, S. 2017.
Interaction of stattic, a STAT3 inhibitor with human
serum albumin: Spectroscopic and computational study. Journal of
Biomolecular Structure and Dynamics 35(16): 3581-3590.
AlAjmi, M.F., Rehman, M.T.,
Khan, R.A., Khan, M.A., Muteeb, G., Khan, M.S.,
Noman, O.M., Alsalme, A. & Hussain, A. 2020.
Understanding the interaction between α-1-acid glycoprotein (AGP) and
potential Cu/Zn metallo-drugs of benzimidazole
derived organic motifs: A multi-spectroscopic and molecular docking study. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy 225: 117457.
Asngari, N.J.M., Bakar, K.A., Feroz, S.R., Razak, F.A.
& Halim, A.A.A. 2024. Interaction mechanism of a cysteine protease
inhibitor, odanacatib, with human serum albumin: In
vitro and bioinformatics studies. Biophysical Chemistry 305: 107140.
Aryanto, D., Othaman, Z., Ismail, A.K. & Ameruddin,
A.S. 2010. Surface morphology on In0.5Ga0.5 quantum dots
grown using Stranski-Krastanov growth mode. Sains Malaysiana 39(6): 1025-1030.
Bakar, K.A. & Feroz, S.R. 2019. A critical view on the analysis of
fluorescence quenching data for determining ligand–protein binding affinity. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy 22: 117337.
Bakar, K.A., Lam,
S.D., Sidek, H.M. & Feroz,
S.R. 2020. Characterization of the interaction of diosgenin with human serum
albumin and α1-acid glycoprotein using biophysical and bioinformatic
tools. Journal of Molecular Liquids 306: 112865.
Bertozo, L.C., Neto, E.T., Oliveira, L.C. & Ximenes, V.F. 2018.
Oxidative alteration of Trp-214 and Lys-199 in human serum albumin increases
binding affinity with phenylbutazone: A combined experimental and computational
investigation. International Journal of Molecular Sciences 19(10): 2868.
Bhal, S.K., Kassam, K., Peirson, I.G. & Pearl, G.M. 2007. The rule of five
revisited: Applying log D in place of log P in drug-likeness filters. Molecular
Pharmaceutics 4(4): 556-560.
Chen, C.B., Hammo, B., Barry, J. & Radhakrishnan, K. 2021. Overview
of albumin physiology and its role in pediatric diseases. Current Gastroenterology Reports 23(8): 11.
Dos Santos, R., Figueiredo, C., Viecinski, A.C.,
Pina, A.S., Barbosa, A.J.M. & Roque, A.C.A. 2019. Designed affinity ligands
to capture human serum albumin. Journal of Chromatography A 1583: 88-97.
Ekawati, L., Nurohmah, B.A., Syahri, J. & Purwono, B. 2022. Substituted 3-styryl-2-pyrazoline
derivatives as an antimalaria: synthesis, in vitro assay, molecular
docking, druglikeness analysis and ADMET prediction. Sains Malaysiana 51(10): 3215-3236.
Elhefnawy, O. & Elabd, A. 2018. Spectrophotometric determination of UO22+
by a new chemosensor labetalol hydrochloride. Arab
Journal of Nuclear Sciences and Applications 51(3): 121-129.
Elpek, G.O. 2021. Orosomucoid in liver disease. World Journal of
Gastroenterol 27(45): 7739-7747.
Feroz, S.R., Mohamad, S.B.,
Bakri, Z.S.D., Malek, S.N.A. & Tayyab, S. 2013. Probing the interaction of
a therapeutic flavonoid, pinostrobin with human serum
albumin: Multiple spectroscopic and molecular modeling investigations. PLoS ONE 8(10): e76067.
Gao, W., Li, N., Chen,
Y., Xu, Y., Lin, Y., Yin, Y. & Hu, Z. 2010. Study of interaction between syringin and human serum albumin by multi spectroscopic
method and atomic force microscopy. Journal of Molecular Structure 983(1-3):
133-140.
Goncharova, I., Jašprová, J., Vítek, L. & Urbanová, M. 2015. Photo-isomerization and oxidation of
bilirubin in mammals is dependent on albumin binding. Analytical
Biochemistry 490: 34-45.
Gotti, R., Bertucci, C., Andrisano, V., Pomponio, R. & Cavrini, V.
2003. Study of donepezil binding to serum albumin by capillary electrophoresis
and circular dichroism. Analytical and Bioanalytical Chemistry 377(5):
875-879.
Halgren, T.A. 1999. MMFF VI.
MMFF94s option for energy minimization studies. Journal of Computational
Chemistry 20(7): 720-729.
Larsen, M.T.,
Kuhlmann, M., Hvam, M.L. & Howard, K.A. 2016.
Albumin-based drug delivery: Harnessing nature to cure disease. Molecular
and Cellular Therapies 4(1): 3.
Lee, W.Q., Affandi, I.S.M., Feroz, S.R.,
Mohamad, S.B. & Tayyab, S. 2017. Evaluation of pendimethalin binding to
human serum albumin: Insights from spectroscopic and molecular modeling approach. Journal of Biochemical and Molecular
Toxicology 31(2): e21839.
Lee, Y.S., Choi, J.W.,
Hwang, I., Lee, J.W., Lee, J.H., Kim, A.Y., Huh, J.Y., Koh, Y.J., Koh, G.Y.,
Son, H.J., Masuzaki, H., Hotta,
K., Alfadda, A.A. & Kim, J.B. 2010. Adipocytokine orosomucoid integrates inflammatory and metabolic signals
to preserve energy homeostasis by resolving immoderate inflammation. The
Journal of Biological Chemistry 285(29): 22174-22185.
Luo, Z., Lei, H., Sun,
Y., Liu, X. & Su, D-F. 2015. Orosomucoid,
an acute response protein with multiple modulating activities. Journal of
Physiology and Biochemistry 71(2): 329-340.
Mishra, V. &
Heath, R.J. 2021. Structural and biochemical features of human serum albumin
essential for eukaryotic cell culture. International Journal of Molecular
Sciences 22(16): 8411.
Mohamed, W.R.,
Mahmoud, N., Abdel Samad, F., Ahmed, E., Hamblin, M.R. & Mohamed, T. 2022.
Rapid monitoring of serum albumin as a biomarker of liver and kidney diseases
using femtosecond laser-induced fluorescence. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 268: 120646.
Morris, G.M., Huey,
R., Lindstrom, W., Sanner, M.F., Belew,
R.K., Goodsell, D.S. & Olson, A.J. 2009.
AutoDock4 and AutoDockTools4: Automated docking with selective receptor
flexibility. Journal of Computational Chemistry 30(16): 2785-2791.
Nozaki, A., Hori, M.,
Kimura, T., Ito, H. & Hatano, T. 2009.
Interaction of polyphenols with proteins: Binding of (–)-epigallocatechin
gallate to serum albumin, estimated by induced circular dichroism. Chemical
and Pharmaceutical Bulletin 57(2): 224-228.
Omar, M.A., Derayea, S.M., Abdel-Lateef, M.A. & El Hamd, M.A. 2018. Derivatization of labetalol hydrochloride
for its spectrofluorimetric and spectrophotometric determination in human
plasma: Application to stability study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 190: 457-463.
Otagiri, M. 2005. A molecular
functional study on the interactions of drugs with plasma proteins. Drug
Metabolism and Pharmacokinetics 20(5): 309-323.
Pettersen, E.F.,
Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C. & Ferrin, T.E. 2004. UCSF Chimera - A visualization system
for exploratory research and analysis. Journal of Computational Chemistry 25(13): 1605-1612.
Ravindar, L., Ng, Y.H., Bakar,
K.A., Hidayat, A.F.A., Feroz,
S.R., Raheem, S., Hasbullah, S.A. & Hassan, N.I.
2024. Synthesis, molecular docking and heme detoxification of pyrano[2,3-c]pyrazole-aminoquinoline hybrids as potential
antimalarial agents. Sains Malaysiana 53(8): 1953-1968.
Ruiz, M. 2021. Into
the labyrinth of the lipocalin α1-acid glycoprotein. Frontiers in
Physiology 12: 686251.
Russi, M., Cavalieri, G.,
Marson, D., Laurini, E. & Pricl,
S. 2022. Binding of the B-Raf inhibitors dabrafenib and vemurafenib to human
serum albumin: A biophysical and molecular simulation study. Molecular
Pharmaceutics 19(5): 1619-1634.
Salem, A.E. 2017.
Labetalol hypotensive anesthetic protocol paves the
way to safe open abdominal myomectomy. Journal of Anesthesia & Intensive Care Medicine 3(2): 555606.
Shalihin, M.S.E., Harun, Z. & Osman, I.F. 2020.
Essential hypertension onset in a 12-year-old adolescent. Sains Malaysiana 49(1): 129-132.
Sharaf,
A., El-Shazly, K.A., Abd El Latif, A., Abdelkawy, K.S., Elbarbry, F.
& Khalifa, H.O. 2021. Comparative evaluation of the effects of atorvastatin
and lovastatin on the pharmacokinetics of aliskiren in rats. Sains Malaysiana 50(3): 829-837.
Tayyab,
S. & Feroz, S.R. 2021. Serum albumin: Clinical
significance of drug binding and development as drug delivery vehicle. Advances
in Protein Chemistry and Structural Biology 123: 193-218.
Trynda-Lemiesz, L. 2004.
Paclitaxel–HSA interaction. Binding sites on HSA molecule. Bioorganic &
Medicinal Chemistry 12(12): 3269-3275.
Vlasova, I.M. & Saletsky, A.M. 2009. Study of the denaturation of human
serum albumin by sodium dodecyl sulfate using the
intrinsic fluorescence of albumin. Journal of Applied Spectroscopy 76(4): 536-541.
Webster, L.M., Webb,
A.J. & Chappell, L.C. 2018. What is the evidence for using labetalol as a
first-line treatment option for hypertension in pregnancy? Drug and
Therapeutics Bulletin 56(9): 107-111.
Zainal, M.H.B.,
Mark-Lee, W.F., Tahir, S.M., Ahmad, I.B. & Kassim,
M.B. 2018. Experimental and DFT investigation on the influence of electron
donor/acceptor on the hydrogen bonding interactions of
1-(1,3-benzothiazol-2-yl)-3-(R-benzoylthiourea). Sains Malaysiana 47(5): 923-929.
Zsila, F. 2013. Subdomain
IB is the third major drug binding region of human serum albumin: Toward the
three-sites model. Molecular Pharmaceutics 10(5): 1668-1682.
Zsila, F. & Iwao, Y. 2007. The drug binding site of human α1-acid
glycoprotein: Insight from induced circular dichroism and electronic absorption
spectra. Biochimica et Biophysica Acta (BBA) - General Subjects 1770(5): 797-809.
Zsila, F., Bikadi, Z., Malik, D., Hari, P., Pechan,
I., Berces, A. & Hazai,
E. 2011. Evaluation of drug–human serum albumin binding interactions with
support vector machine aided online automated docking. Bioinformatics 27(13):
1806-1813.
*Corresponding author; email:
shevin@ukm.edu.my